Saturday, October 18, 2008

Technology in and for the Instrumental Music Classroom(2)

Despite a gradual, while still limited, acceptance of instrumental music within the school curriculum, budget cuts have often curtailed or even eliminated these programs. Further, with the recent increased emphasis upon “teaching to the test” due to the pressures of No Child Left Behind (NCLB) and similar state requirements, support for the inclusion of music in schools has begun to wane. Michelle R. Davis, in “Education Week,” stated “The federal No Child Left Behind Act is prompting many schools to cut back on subjects such as social studies, music, and art to make more time for reading and mathematics…” (Davis, 2006) This is most unfortunate considering that the study of music, especially instrumental music, has proved to be beneficial for all students – even increasing their ability to reason and problem-solve.

Many theorists have contributed to the elevation of music as central to education, or at the very least, demonstrated that limiting the school environment to the “Three R’s” is short-sighted. Howard Gardner postulated his “Multiple Intelligences” theory with the understanding that children do not possess identical propensities for learning. Not only do they have differing capacities for learning but have differing capacities for learning in many areas. These areas, as he explained, are the varying intelligences of which he speaks. Originally describing seven intelligences (of which music is highlighted) he identified two specifically (linguistic and logical-mathematical) as “the ones that have typically been valued in school.” (Gardner, 1999, p41) Obviously, Gardner recognized that the educational system was not reaching all students – only those that could “do school” well. Gardner did not limit his study, of course, to the mere existence of multiple intelligences but demonstrated that a given person can be strong in more than one, enabling those intelligences to interact one with the other. He explained that, “there are other ways in which different intelligences can affect each other…one intelligence can mediate and constrain the others; one intelligence can compensate for another; and one intelligence can catalyze another.” (Gardner 2, 2006, p219) He further extolled the advantages of a musical intelligence by explaining that “…a strong musical intelligence may lead a person engaged in a linguistic task to be more sensitive to the rhythmic properties of language as well as its meaning.” (Ibid, p223)

While many may assume that music and the study thereof is associated primarily to that which is heard, it is also related quite closely to mathematics. Dahlhaus, reflecting Rameau stated that “music had its origins in the Pythagorean proportions; (i.e., music is a mathematics).” (Gargarian, 1996, p137, 138) Regardless of whether or not one agrees with the theory that music is mathematical in toto, there should be little dispute as to the relativity of music notation to mathematics. Indeed, introducing the coordinate, or Cartesian, plane appears to aid the new music student in understanding the horizontal (x), and vertical (y) axes of music notation. Simply stated, the horizontal (x) axis on the music staff relates to duration while the vertical (y) axis relates to pitch. This, of course is a reflection upon Gardner’s aforementioned theory of intelligence interaction.

There is further evidence that instrumental music study is advantageous for the student. In 1995, Gottfried Schlaug, et al, published a study, “Increased Corpus Callosum Size in Musicians” wherein they described an increase in neural fibers across the Corpus Callosum (CC), contributing to its enlargement. They further were able to determine that this increase in fibers/CC size was attributable to instrumental music study. (Schlaug, et al, 1995) Obviously, the supposition can easily be made that, if there is greater cross-talk between the two hemispheres of the brain (specifically, the left – thought to be the analytical, and the right – thought to be the creative) the result would be a person with a greater, more creative, problem-solving ability.

Reflecting upon Gardner’s theories, as well as those of Schlaug, et al, it should surprise no one that others have confirmed links between music and other skills. Bahr and Christiansen in their article “Inter-Domain Transfer Between Mathematical Skill and Musicianship” published findings demonstrating that students who had studied music demonstrated superior performance on mathematical tasks provided there was some structural overlap with music. (Bahr, Christiansen, 2000) This “structural overlap” could be nearly anything, including the relationship of dividing measures or notes into fractions, relating pitch to frequency, or, as aforementioned, establishing the link between the coordinate (Cartesian) plane and the music staff.

With this enhanced problem-solving ability; this increased awareness of mathematical concepts, it would not be a grand leap to assume that music students might perform well with classroom technology. Indeed, music students should be expected to do at least as well as other students with regard to technology. If that is true, then the next step would be to assume that they would do especially well with technology geared especially to them.

Somewhat recently, technologists, recognizing a dearth of technologically-based music applications began to develop computer programs for music education. Music theory websites began to appear, many having been produced by, and linked to, symphonic organizations. Others have been produced by teachers and graduate students either as part of coursework or perhaps for their own use (and anyone wishing to utilize the application). A quick search of the internet reveals that there are quite a number of available technological tools produced and published for the music student. There are interactive music games, in-class keyboard music theory applications, countless online pitch and rhythm websites, and, perhaps most powerful, applications known as “computer assisted instruction” (CAI)” specifically for the music classroom and student. In January 2005, Steven Estrella published the findings of a study demonstrating how music teachers in the U.S. used music technology. Among his findings, he discovered that approximately twenty percent of the survey participants used some form of CAI as part of their instruction. The survey further discovered that the predominant software application was “SmartMusic.” (Estrella, 2005)

No comments: